Hyper-Frequency Wave Guides—Mathematical Theory
By JOHN R. CARSON, SALLIE P. MEAD and S. A. SCHELKUNOFF

Following a brief historical sketch, this paper deals with the mathe-
matical theory of wave transmission in two novel kinds of cylindrical
wave guides of circular cross section; namely, the hollow conductor and
the dielectric wire. These transmission systems behave as high pass
filters with exceedingly high critical frequencies.

The attenuation and impedance characteristics of the hollow conductor,
heretofore ignored as far as the writers are aware, are given especial atten-
tion. This investigation discloses the remarkable fact that there exists in
this system one and only one type of wave, the attenuation of which de-
creases with increasing frequency, a characteristic which attaches to no
other type of guided wave known to the writers.

I. INTRODUCTION

HE object of this paper is to derive and discuss the characteristics
of two novel guided wave transmission systems. Structurally
one consists simply of a straight hollow ! conducting cylinder of circular
cross-section. The electromagnetic wave is confined inside the cylin-
drical sheath and is propagated along the axis of the cylinder. The
other consists simply of a dielectric wire, within which the major part
of the electric field is confined. The mathematical theory developed
below does not deal with the question as to how such waves are estab-
lished nor with the reflection phenomena which must occur at the
terminals and other points of discontinuity. The analysis is limited to
finding the types of waves which are possible in such systems, and to
investigating and describing their characteristics.

The historical background of the problem is interesting. In 1897
Rayleigh published a paper entitled “‘On the Passage of Electric Waves
through Tubes, or the Vibrations of Dielectric Cylinders.” 2 Dealing
solely with ideal cylinders of perfect conductivity he showed that for all
types of waves that can exist inside the cylinders there are critical fre-
quencies below which the waves are attenuated and above which they
are freely transmitted. The first paper on transmission along dielectric
wires was that published in 1910 by Hondros and Debye entitled
‘‘Elektromagnetische Wellen an dielektrischen Drihten.” * This
deals theoretically with transmission along cylinders of ideally non-
conducting material, somewhat along the lines followed in Section IV

1 The term hollow means that the interior of the cylinder is electrically non-
conducting.

2 Phil. Mag., Vol. 43, 1897, pp. 125-132.

3 Ann. der Phys., Vol 32, 1910, pp. 465-476.
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of this paper. Another paper, entitled “Uber den Nachweis elektro-
magnetischer Wellen an dielektrischen Dréahten,” 4 published in 1916 by
Zahn, is of interest because of the historical note attached, which
indicates that experimental work was begun in 1914 by Riiter and
Schriever, two students of Zahn, and continued with such diligence as
the exigencies of war permitted until the date of Zahn's paper, at least.
In 1920 Southworth, then working at Yale University, accidentally
observed such waves in a trough of water which he was using in con-
nection with some high-frequency studies, measured their wave-lengths
and recognized their identity with those discussed by Schriever ®
in a paper which appeared at about that time. In 1924 Carson re-
discovered the transmission characteristics of the hollow conducting
cylinder, and disclosed it in an unpublished memorandum entitled
“Hyper-Frequency Wave Filters.” Finally, in 1931, Southworth,
then a research engineer with the American Telephone and Tele-
graph Company, returned to the subject and initiated the compre-
hensive investigation which he is reporting in a companion paper.®
Independently, and almost simultaneously, Hartley, at the Bell
Telephone Laboratories, suggested the possibility of guided transmis-
sion along a hollow cylindrical dielectric wire; and these two (South-
worth and Hartley) enlisted our cooperation in a mathematical in-
vestigation,

In the theoretical parts of these papers dissipation was always
neglected, though obviously the attenuation would be a controlling
factor in practical applications. The writers, on the other hand, have
given especial attention to this factor. Out of this research there
emerged the remarkable fact that with hollow conducting guides there
exists one and only one type of wave the attenuation of which decreases
with increasing frequency; a unique characteristic which does not
attach to dielectric wires, nor so far as the writers are aware, to any
other type of guided wave.

TA. TransmissioN THrRoUGH HorLow ConpucTING CYLINDERS

Throughout this paper it will be assumed that the cylindrical sheath
possesses high conductivity and that the losses in the internal dielectric
medium are either small or negligible. Subject to these assumptions
the effect of dissipation on the attenuation of the wave is formulated in

Y Ann. der Phys., Vol. 49, 1916, pp. 907-933. This paper contains several col-
lateral references.

® “Elektromagnetischen Wellen an Dielektrischen Drahten,” Ann. der Phys., Vol.
63, 1920, pp. 645-673.

¢ “Hyper-Frequency Wave Guides—General Considerations and Experimental
Results,” G. C. Southworth, this issue of the Bell System Technical Journal.
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Section III. First, however, in the general discussion which immedi-
ately follows and, in particular, in the comparison with the usual guided
wave transmission systems, attention will be confined to the ideal
non-dissipative structure. This simplification brings out, in a simpler
and more striking way, the peculiar transmission characteristics of the
system, while, at the very high frequencies involved, it introduces
negligible error except as regards the attenuation due to dissipation.

In the ordinary type of guided-wave systems, such for example, as
that composed of two concentric conductors, or two parallel wires, the
guiding conductors form two sides of a circuit in which equal and
opposite currents flow, and the transverse lines of electric intensity
terminate on the two sides of the circuit. In the system under con-
sideration there is only one conductor and consequently there is no
circuit in the usual sense. Corresponding to this difference in physical
structure there are striking differences in the character of the waves
propagated.

In the first place, in the ordinary type of guided wave system, the
wave employed for the transmission of power and intelligence is the
Principal Plane Wave. For the ideal non-dissipative case, the field of
this wave is entirely transverse to the axis of the system; that is, the
axial components of the electric and magnetic intensities are every-
where zero. Furthermore all frequencies are transmitted without
attenuation with the same phase velocity; that of light in the medium.
(Of course dissipation modifies the phenomena somewhat but in actual
systems designed for efficient transmission the Principal Wave ap-
proximates to that just described.)

In the hollow conducting cylinder, on the other hand, no principal
transverse wave can exist; that is, there must exist inside the cylinder
either an axial component of the electric or the magnetic intensity, or
both. Physically this is answerable to the absence of a circuit on
which the transverse lines of force might terminate. Thus in the
hollow conducting cylinder all the possible waves must be complemen-
tary waves;” a type which is ignored in the ordinary transmission
system. '

A second outstanding distinction is that in the hollow conducting
cylinder, all frequencies below a critical frequency are attenuated while
frequencies above the critical frequency are freely transmitted without
attenuation.® In thisrespect the system behaves like a Campbell high-

7 See '‘Guided and Radiated Energy in Wire Transmission,”” John R. Carson,

Jour. A.I.E.E., October 1924, ‘
8 It will be understood, of course, that this is strictly true only in the ideal case of

no dissipation.
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pass wave-filter. The exact value of the critical frequency depends, as
shown later, on the type of wave transmitted; roughly speaking,
however, the internal diameter must be approximately equal to one-
half a wave-length in the internal dielectric medium at the lowest
critical frequency. (The exact formula is diameter > 32% times the
wave-length.) Since we are interested in freely transmitted waves it is
evident at once that for a cylinder of practicable dimensions the
frequencies employed must be relatively enormous. For this reason it
may be appropriately said that the hollow conducting cylinder is
applicable to the transmission of hyper-frequency waves alone.

The types of waves which can exist inside the cylinder are broadly
classifiable as E-waves and H-waves.? By the term E-wave is to be
understood a wave in which the axial component of the magnetic force
is everywhere absent; correspondingly in the H-wave the axial com-
ponent of the electric force is everywhere absent. In the E-waves the
surface currents in the cylinder are entirely parallel to the axis thereof.
On the other hand, in the H-waves the currents may have both trans-
verse and axial components; that is, circulatory components around the
periphery of the cylinder in planes normal to its axis as well as com-
ponents parallel thereto.

In each class of wave there may exist a fundamental wave and in
addition geomelrically harmonic!® waves. In the fundamental wave
the phenomena do not vary around the periphery of the cylinder. In
the nth harmonic wave (E,- or H,-wave) the phenomena vary around
the periphery as cos n(6 — 8,).

Each component E- or H-wave has its own individual critical fre-
quency. Curiously enough the lowest critical frequency is possessed
by the first harmonic H-wave; that is the H;-wave. For this wave the
critical frequency is given by the formula d > 32—2_8 A where 4 is the in-
ternal diameter of the cylinder and A the wave-length. In general,
however, the critical frequency increases with the order of the harmonic.

In the usual transmission system, the transmission phenomena are
determined and described in terms of the characteristic impedance and
the propagation constant. By characteristic impedance the engineer
understands the impedance actually presented by an infinitely long
line to an electromotive force connected across the terminals of the
circuit. Now since in the hollow conducting cylinder there is only one

® This terminology has been adopted as a matter of convenience. It is suggested
by equations (1) where the field is expressed in terms of E, and H,. Another
terminology is transverse magnetic and transverse eleclric waves.

10 This term must not be confused with frequency harmonics.



314 BELL SYSTEM TECHNICAL JOURNAL

conductor and hence no circuit, this concept breaks down. There is
another way, however, in which the characteristic impedance may be
defined, and by aid of which it remains a useful concept in hollow
cylinder transmission. Writing K = Kg + iK; as the complex
expression for the characteristic impedance, then it may be shown that

K =W+ 20(T — U),

where W is the mean power transmitted, T is the mean stored magnetic
energy, and U the mean stored electric energy, corresponding to an unit
current. Now in the hollow conducting cylinder, for, say the Ey-wave,
we can calculate
W+ 120(T — D)

for an unil axial current, and call this the characteristic impedance.
Again for the Hy-wave we can calculate this quantity for an wunit
circulating current per unit length and designate it as the characteristic
impedance. In addition, somewhat similar conventions apply to the
harmonic waves.

One of the chief uses of the foregoing concept of characteristic
impedance is in the calculation of the attenuation in the dissipative
system. For, if corresponding to W we calculate the mean dissipation
Q per unit length, then the attenuation « is given by

a = Q2W.

All actual systems are of course dissipative and consequently the
wave is attenuated. If the hollow conducting cylinder were to be
employed in practice for hyper-frequency wave transmission the
securing of low and desirable attenuation characteristics would
probably be the controlling consideration.

The attenuation in the free transmission range is due to (1) dissipa-
tion in the cylinder or sheath and (2) dissipation in the internal di-
electric medium. The former is inherent and can be reduced only by
employing a sheath of high conductivity and by properly designing the
dimensions of the system. As regards the dielectric loss, this may be
substantially eliminated by employing air as the dielectric medium.
The use of a dielectric medium of high specific inductive capacity has
the advantage of substantially reducing the critical frequency; on the
other hand it inevitably introduces heavy losses and thus sharply
increases the attenuation. The analysis of Section III brings out the
remarkable fact that for the fundamental H-wave the attenuation
decreases with increasing frequency; for all the other types it increases.
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For the very high frequencies with which we shall be concerned in the
following analysis, a physically very thin cylindrical metallic sheath
behaves electrically as though it were infinitely thick. This fact
greatly simplifies the mathematical treatment; its real importance,
however, is that external interference is entirely eliminated.

As stated at the outset, this paper will not attempt to deal with the
problem of the reflection phenomena which occur at the terminals of
the system and at points of discontinuity. For a discussion of the
general character of the boundary problem the reader is referred to
“Guided and Radiated Energy in Wire Transmission.” 7 It may be
remarked here, however, that the simple engineering boundary
conditions (continuity of current and potential) are entirely inadequate.

IB. TransmissioNn THROUGH DIELECTRIC GUIDES

The greater part of this paper deals with transmission in thin hollow
conducting cylinders; the last section, however, discusses briefly
transmission along the dielectric wire? Theoretically this type of
transmission is extremely interesting and the mathematical theory
resembles to a considerable extent that of hollow cylinder transmission.
Unfortunately, however, dielectric losses are usually high. Hence our
discussion of dielectric waves will be limited to a development of the
fundamental equation from which the critical frequencies and the
phase velocities can be determined.

II. Nown-DissiPATIVE HoLLow ConbpucTIiNG GUIDES

In dealing with the propagation of hyper-frequency electromagnetic
waves inside a long hollow conducting cylinder parallel to the z-axis,
itis convenient to write the field equations in the appropriate cylindrical
coordinates (p, 6, z) in the form,!

)\2]1’,,:;]:%%6—6{)1?.-—75%1‘1:.
NH, = —‘%E%Ez—%a%ﬂ,,
NE, = L E, %‘35‘%11 (1)
NE, = —%%E,—l—pim%hﬂ,

divE =0, divH = 0.

" In this form the field is expressed explicitly in terms of the axial electric and
magnetic intensities and their spatial derivatives. This is highly advantageous for
the purposes of this paper.
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In these equations the symbols have the following significance:

E,, Ey, E. = components of electric force,
H,, Hy, H, = components of magnetic force,
A2 = 4% — B2,
¥ = propagation constant,
W = piw(dre 4 dw/c?) = dropiw — (w?[0?),
= ¢/vVeu = velocity of light in the medium,
= velocity of light in air,
permeability of the medium in electromagnetic units,

Q T o @
Il

= conductivity of the medium in electromagnetic units,
= dielectric constant of the medium in electrostatic units,

-
|

w/27 = frequency,
i=+-1

The solutions of these equations for the axial components of electric
and magnetic force, E, and H, respectively, in the region, 0=p=a, a
being the internal radius of the conductor, are of the form

E. =Y Ju(\)(An cos nf + By sin n6) exp. (iwl &= v2),

n=0

o (2)
H.= 3 Ja(pA)(Cn cos n8 + D, sin n8) exp. (iwt &= v2),

n=0

where A.,, B,, C, and D, are arbitrary constants to be determined by
boundary conditions and J, is the Bessel function of the first kind or
the internal Bessel function. The components of the transverse
electromagnetic field may then be expressed by introducing (2) in (1).

We shall first discuss the simplest case, that in which there is no
dissipation. The current will then be in a sheet on the surface, p = a,
of the perfectly conducting cylinder. But the axial current density
%, and the circulating current density #, are given by

1
e =g Ho p=a 3)
and
1
ug=Z;H., p=a. (4)

Thus it follows that H, and Hj are discontinuous at the surface p = a
and the boundary conditions are simply E, = Ey = 0. These con-
ditions can be fulfilled by two types of waves: (1) a wave for which I,
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is zero everywhere, which will be called generically the E-wave and (2)
a wave for which E, is zero everywhere, which will be designated
generically as the H-wave. (If the cylinder is dissipative, however, the
E- and H-waves can exist alone only for the case of circular symmetry.
In other words, unless 4/d6 = 0, neither the E, nor the H, component
of the field can be identically zero. This will be discussed further in
Section II1.)

Assuming first a non-dissipative system, it will be seen that when H.,
is zero everywhere,

Eyand Eo ~ Jo(Ap) {“"S ”"} :

sin nd

Thus the possible E-waves are determined by the boundary equation
Ja(Aa) = 0, (5)

A =92 4 Wl

where

This has an infinite number of real roots in A determining an infinite
number of possible waves. Only a finite number, m, of these waves
will be unattenuated, however, for, if X is to be real and v pure imagin-
ary, the frequency must be so high that

wfv > Num, (6)

where Anma is the mth root of J,(Aa) = 0. It is therefore convenient to
designate as the E,,-wave that component of the E-wave for which

cos né
B~ Tn(Amp) {sin n&} )
Thus if
X"' m+1 > w/v > xnm;
the components E,, mi1, En, my2, +++ of the E-wave will all be attenu-
ated but E,;, E., -+, E.» will be unattenuated. There will also be

only a finite number # + 1 of the components Ey, Eqy, + + Eny, for the
frequency must be at least sufficiently high so that

w/ﬂ > Any,

where \,a is the lowest root (excluding zero) of J,(Aa) = 0, in order to
transmit the component E,; of the E-wave without attenuation.
Hence the E-wave consists of a doubly terminating series of possible
components; for each of the finite number & + 1 possible values of n
there will be 7, possible values of Aa or a total of

mo + my + ma 4+ -+

possible modes of propagation.
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For the H-wave, E, is zero everywhere,

cos nf
sin 16

By~ 700) |

and the possible waves are determined by the transcendental equation

J (Aa) = 0, ()]
where
A= 92+ o¥fp?

and J,'(z)=(d/dz)J.(s). These values of A\ and consequently of v
will, of course, differ from those characterizing the E-waves. Similarly,
however, there will be a doubly terminating series of possible com-
ponents, Hypm.

Hence for both types of wave the hollow conducting cylinder consti-
tutes a high-pass wave-filter. = The critical frequency fam of the Enm-
wave is given by

Sam = r,.,,.(c/Zra@), (8)

where 7., is the mth root of J,(A@) = 0 or 7um = Auma. Similarly for
the H,.-wave, the critical frequency is

Fam' = Tam’ (c/27ae), (8)'

#um' is the mth root of Jun'(Aa) = 0.

where

The propagation constant y.m is then

iw € iw ©)
C vnm ‘Unm

where the ratio ¢/v.." of the velocity of light in air to the phase velocity
of the wave in response to any frequency f is given by

C/Vm’ = @Nl - (an/fJ2
—0  when f— fum, (10)

— vVep when f— o
for the E-wave and
Cfvam’ = VeuVL — (fam'[F)?
for the H-wave.
For the E-wave we have

2.405, 5.52, - - -
3.83,7.02, ---

I

o1, Yoz, " "

I

11y T12, = °
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and for the H-wave

ro, ree, -+ = 3.83,7.02, ---
ru’, re, - = 1.84,5.33, .- -.

Hence, it is possible to transmit a fundamental E-wave if the radius,
dielectric constant, permeability and frequency are so related that,

faVen = 2.405(c/27), (11)
a fundamental H-wave provided, -

faeu = 3.83(c/27), ' (12)
the component E;; of the E-wave provided

faVeu = 3.83(c/2T) (13)
and the component Hy, of the H-wave provided

faVen = 1.84(c/2m). (14)

Thus from the standpoint of minimum physical constants and di-
mensions the component Hy; of the H-wave is most advantageous.
The consideration of the attenuation characteristics below will show,
however, that this advantage is outweighed, since in practice the
attenuation will be the controlling factor.

We shall now consider the characteristic impedance of the system.!?
While the derivation of the characteristic impedance is interesting and
valuable on its own merits, it also provides the basis for a quasi-
synthetic and approximate method of deriving the attenuation which
will be developed below. The results obtained here on the assumption
of a perfect conductor will be valid in the dissipative case of the
next section provided the conductivity is sufficiently high so that the
relation, 4me 3> ew/c?, obtains among the constants of the sheath.

The characteristic impedance, K, is here defined as the transverse
Complex Poynting Vector, P, integrated over the cross section of the
system divided by the mean square current. Thus we have, in general,

1 *k
P=gfﬁwﬂl (15)
=W+ 20(T — 1),

12 See the discussion of the characteristic impedance in Section I of this paper.
Equation (15) below is in agreement with the definition there given.
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where W is the mean energy transmitted through the cylinder, T is
the mean stored magnetic energy and U the mean stored electric
energy, H* denoting the conjugate imaginary of . Then

K = Kp +iK; (16)
and

iKe|I|2 =W, (16a)
while

1K |I|? = 20(T — D), (16b)

I being the total current. (In a non-dissipative system T = U and
K = Kpz.) Rewriting the integral in (15) we therefore have

27 a
W = }Kg|I]? = i[f f p(E,Hy* — E,H,*)dpda] Can
87 0 0 Real Part

(From equations (1) it readily follows, that for any E- or H-wave, K
may be made to depend upon either the transverse electric or transverse
magnetic force alone by substituting in formula (17)

! ¢ \/é‘ Yimy ()

E He* — EH,* = -

eV 2
#w[E]

for the E-wave, and

1 [ev w
* E J—— - _ 2 Lol 712
EHy* — EH,* = - \/M SIEP = cq[t 5 [H] (19)

for the H-wave, where [EJ? and [H ]? are defined as
[ET = |E,| + |Eal* and [HT = |H|*+ |Hl*)
Consider first the fundamental E-wave. H,, H, and E; are zero and
E, = AJo(p\),
E, = 1 AT:(pN), (20)

elw 1

Iy = <7 S ATV,

where
A = 4% 4 wfe?

and A= Tom/(]:. (Jo(?’(]m) = 0)

From (3) the total axial current I, in the sheath is given by

I, = %Ha, = a. (21)
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Putting I, = 1 then gives

-
"~ dwai(Aa)
Thus

cc 2 1

K= vatoon f p(J1(Np))%dp

¢ Jao(Aa) \? 2 Jo(\a)
T v [ 1+ (L(?\a)) - AT:L(M)]
= cVpfe N1 — (fou/f)%. (22)

Now, for the fundamental component H, of the H-wave, E., E, and
Hjy are zero and

H, = CJo(Mp),
H, = CTi(M), (23)
Ev= =2 cr00),
where
A= 4 4 Wyt
and
A= rg.."/a. (Jo’(?’um) = 0)

There is no axial current transmitted by this wave but there is a
circulating current in the sheath. From (4) this circulating current,
Iy, per unit length is given by

I = ‘—;H when p = a. (24)

Thus, for the Hy-wave, we calculate the characteristic impedance with
respect to unit circulating current per unit length of conductor. This
gives

4r
€= 700
and
4rw
- (5 [ o
= (@rapt, ( ) (25)
where, as given above, rg.’ is the mth root of Jy'(Aa), and, by (10),
, c 1
ﬂ =

Neu VT = (on [
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So we see that, while the characteristic impedance of the Ep-wave
approaches a constant at very high frequencies, for the Hy-wave we

have
K ~ o

In other words, while the energy transmitted by the Ey-wave is inde-
pendent of the frequency at sufficiently high values of frequency, that
transmitted by the Hy-wave increases as the square of the frequency.
For the harmonic E- and H-waves, the currents vary as cos nf
around the periphery of the sheath. Hence the total harmonic current
is zero over any axial or normal cross-section. For these waves, how-
ever, it is possible and convenient to calculate the Complex Poynting
Vector on the basis of the average mean square current intensities,

1 2r 2 1 2x 1
which we may assume for convenience to be of the same value, 1/2,

as the mean square currents associated with the fundamental com-
ponents.

On this basis we shall obtain first the characteristic impedance of
any harmonic component E, of the E-wave, ignoring dissipation.

Putting

H,|?

v as, p=a,

4r

Jada) =0 and Na = rum,

the Complex Poynting Vector becomes

— 4 ! 2 An 2 Bﬂ 2 o
On the basis of the current value which we are assuming
2 2 2\ 2
JM%_,B_"L (Jner(Fam))? = 3272 ( é) . (27)
Thus
= (2ma)’eVuleNT — (fumlF)*. (28)

Similarly, for the component H, of the H-wave, we put

JJ/(Aa) =0 and Mo = 7,
getting

W - S (5) s+ 1D T (1= ).

(=}
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where
(1Cal? + | Da|?)(Ta(ram’))? = 3242 (30)
Thus

n \p/ f \?
— 4 — | A
KR = (21!'0«) ( 1 (rnmr)g) o (fﬂm’) ’ (31)
where, as given above, r,." is the mth root of J.'(Aa) and, by (10)

=t 1 |
Veu V1 — (fun [

Thus the mean transmitted energy and the characteristic impedance of
all components of the H-wave increase as the square of the frequency
whereas these characteristics of the E-wave are constant with respect
to frequency. To appreciate the bearing of this difference upon the
comparative attenuations consider the following argument.

Since the wave varies along the z-axis of the transmission system as
exp. ((— a — #8)2), « and B denoting the attenuation and phase con-
stants per unit length, respectively,

%P—r = — 2aW. (32)
But, denoting by Q the dissipation loss per unit length of the trans-
mission system, we have also

aw —
T = —0. (33)

Hence, .
a = Q)2W (34)
= (470 S dSLE-H*1.) gent pare- (35)

Thus, we see that, if the mean dissipation loss, @, is known or readily
obtainable, the Complex Poynting Vector, W, leads immediately to
the attenuation.

To obtain Q we have the formula
0= (g fostmomy) - (36)
m Real Part

Thus o may also be written

o ( - de[E-H*],)
2de[EII*]= Real Part

(37)
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in which it is evident the current is not explicitly involved. If we
write _

Q = R(I*)m
and

W = Kg(I%)m,

R being the resistance per unit length and Kz the characteristic im-
pedance with respect to the mean square current (I%),, we have in

addition
a = R[2Kp. (38)

Before continuing our discussion of attenuation, we shall, therefore,
have to calculate the losses in the sheath and the internal dielectric

medium.

I1II. DissipaTive HoLLow CoNDUCTING GUIDES

In the ideal case of the preceding section, where the conductivities
o1 and o2 of the dielectric and conductor are, respectively, zero and
infinity, the boundary conditions are simply that £, = E; = 0 at the
surface, p = a. When we take into account the dissipation which is
actually present in the conductor (and the dielectric as well) the
boundary conditions are the continuity of both the tangential electric
and tangential magnetic forces. This double set of boundary con-
ditions makes the problem inherently more difficult, of course. As we
are assuming a good conductor and dielectric, we shall treat the dissi-
pative case as a departure of the first order from the ideal case. Thus,
since the dissipation has a negligible first order effect upon the phase
velocity, the propagation constant v will now be

v = iwfv +
where a denotes the attenuation.

We must now consider the field in the sheath as well as the field
in the inner dielectric medium. When necessary we distinguish be-
tween the electrical constants of the two media by the subscripts 2
and 1, respectively. We suppose that the sheath is electrically very
thick, a legitimate assumption at the very high frequencies in which
we are interested, and write for p > a,

E, = i,Kn(pRg) (4, cos n8 + B, sin n0) exp. (iwl £ v3),
- (39)
H, = ):,;Kﬂ(pM)(C,.’ cos n8 + D, sin n8) exp. (1wt £ v2),

A2 =42 — hy?
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and K, is the Bessel function of the second kind ¥ (or the external
Bessel function) and obtain I1,, Hy, E, and Ey from (39) and (1).
Putting

Ma =y and A = x,

and equating the tangential electric and magnetic forces E,, E; and
H., Hy at the boundary surface p = a, we obtain eight homogeneous
equations in the eight arbitrary constants. A non-trivial solution
requires the vanishing of the determinant; this condition leads to the
transcendental equation :

(&f Ji'(y) _ he? K,.'(x))( JJ(y) K,.'(x))
w1 yTa(y)  we xK.(x))\F' 3T T KL ()

1 1\2
- ﬂ2"}’2 (? -_— x—,‘,) = 0, (40)

where

¥ = atyt = ) (40a)

and
x? = a*(y? — ho?). (40b)

The propagation constant v is then determined by equation (40).

We mentioned in Section II that the E- or H-waves cannot exist
alone in the dissipative case unless they are circularly symmetrical and
it may be noticed that both E, and H, were required in the analysis
of the preceding paragraph. To show that E, and H, must coexist
when the conductor is dissipative, assume for the moment that E, = 0.
The boundary equations when n = 0 are then

CuJu(y) = Ci'K,(x), D.Ju(y) = D,/K.(x),

C. C,’ D, D,/

?-In(y) = F-Kn(x)x ? Ju(y) = = K,(x), (41)
nulcn ' _ F?Cu’ ’ .P'-an ’ _ #EDIL’ ’
_y“-fn (¥) = o K,'(x), _y T (y) = P K,'(x),

six equations which cannot be satisfied by four arbitrary constants.
When n = 0, however, Hy is everywhere zero and the boundary equa-
tions are simply

CoJo(y) = Ci'Ko(x),

mCo o, _ p2Co’ ’
Y Jo (y) = _._’t‘._Kﬂ (x)

(42)

'3 This is the Hankel function given in Jahnke und Emde, ‘' Funktionentafeln,”
p. 94, 1st ed., and denoted by H,"'(z) when argz < =. To avoid confusion with the
nth harmonic of the H-wave, we shall use K, as a generic symbol to denote the
external Bessel function.
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Similarly the boundary equations can be satisfied when H, = 0 pro-
vided # = 0 but not when # # 0.

Although E, and H, must co-exist in the dissipative case, one or
the other will predominate in the actual wave provided the conduc-
tivity is so high that 472> ew/c?, a condition which is true of a good
conductor unless f — «. That this is so or, in other words, that the
actual wave approximates either an E- or an H-wave will now be
shown from equation (40). Since it is assumed that the conductivity
is high or that

droy>> eufc? and R’ 3> v, (43)

x = aV — 4rougiw and the asymptotic values of K,(x) and K.'(x) are
valid. Equation’(40) may then be written

B T)  he\(. Tn') _ s\ _ ool . 1\ _
(L2 00— Lo (5T — ) = (s + ) = 0

When h; = «, (44) reduces to

Ja'(v) = 0 provided J,(y) # 0 (45)
and to
Ju(y) = 0 provided J,'(y) # 0. (46)

‘Thus there are two possible solutions of (44). These are in the neigh-
borhood of y = r and of y = r/, where r and r/, respectively, are roots
of J.(y) =0 and of J./(y) =0, the equations characterizing the
E- and the H-wave, respectively. We shall, therefore, refer to E- and
H-waves in the dissipative case with the understanding that the actual
wave approximates either one or the other type in a cylinder of suffi-
ciently high conductivity.

As stated above, the propagation constant y may be determined by
solving equation (40). The procedure is straightforward but is com-
plicated by the necessity for approximations and does not easily admit
of physical interpretation. We may obtain the same attenuation for-
mulas by means of the quasi-synthetic method developed at the end
of Section II.

The high-frequency attenuation of the symmetric E- and H-waves
is easily derived from equation (38). Here R, the resistance per unit
length of the cylinder for the E-wave at sufficiently high frequencies,
is given by

!

_ paf/as
R=—""—" (47)
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Introducing K of (22) for Kg, and understanding that ¢ = ¢, while it is
assumed that e, = 1, we have

. ) 1
a = 2(16 1102 1 _ (fﬂm/f)z (48)

to a high precision at high frequencies (f > fom). This is, of course, the
contribution of the conductor and ignores the effect of the conductivity
of the dielectric.

Similarly, for the fundamental H-wave, the resistance per unit
length of the cylinder at sufficiently high frequencies, from equations
(1) and (39) and the relations

— a 27
0= [# E,H,*do]

8’”’ 0 Real Part
and
1 1
AT 2 _ =,
(1) m 2 | Ty 3
is given by
R = \'anf/’O'2_ (49)

a

Putting K of (25) for Kg, gives, to the same precision as (48), when
f > meI:

o = Veus/ura(fou')? fue ‘
2ac VI = (for'[f)2

(50)

Formulas (48) and (50), respectively, may be written in the form

Qg

o= c 48)’
V1 — (f/f)* >4 )

and

(f'1f)? ' '
o = g —FT/—, ! > c 50
i 7 0
where
1 fa
2ac H102

a@p

and f, and f.” are the critical frequencies of the fundamental E- and
H-waves, respectively, as given by (8) and (8)’.
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Thus, in the neighborhood of their respective critical frequencies, the
attenuations of the two waves are functionally the same; ultimately,
however, while the attenuation of the fundamental E-wave increases
as f/2, the attenuation of the fundamental H-wave decreases as f~/%;
a remarkable property peculiar to this type of wave alone.

By extending the preceding treatment to the harmonic waves, it is
found after some rather laborious analysis that for all the component
E-waves,

a=—= __, » 51
o 77 61

Care must be taken, of course, to choose the correct critical frequency
(fa = fam) for the particular component wave under consideration.

For all the H-waves (including the fundamental H-wave) it is found
that

_ o 11\ (n/f"’)2
= = (1 TG 2

Here # is the order of the geometric harmonic wave (H,-wave) and
7' is the root of J./(y) corresponding to the particular component wave
under consideration.

The foregoing formulates the attenuation due to dissipation in the
sheath alone. If we suppose that the dielectric has a very small but
finite conductivity o1, then there must be added to the attenuation,
for all types of waves, a term

211'016\[.LLT/E
Lt A 53
V1 = (fa/f)? &9

To a first order approximation the dissipation has no effect on the
phase velocity, which is simply #'.

Comparative values of attenuation are shown on the accompanying
drawing for the fundamental and for the first harmonic E- and H-
waves. This is the attenuation due to the loss in the conductor only.
That due to the dielectric loss, the term given by (53), must be added.
In many instances, we cannot say how large this term will be, for the
losses in many dielectrics at the high frequencies involved herein are
not known with any certainty at present. Such approximate calcu-
lations as we have made, however, have shown them to be very large
except in the case of air.
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fe = critical frequency of fundamental E-wave in megacycles,

inner diameter of cylinder in centimeters,

conductivity of cylinder in emu

6.06 X 10~ for copper.

to read db per mile.

a

IV. DieLectric CyLINDRICAL GUIDES

We shall now pass to the mathematical theory of waves in dielectric
“wires' of circular cross-section, immersed in air. We assume that
the dielectric is perfect. The field in such a dielectric guide, and in
the air outside, can be represented by the same general expressions
as in hollow tubes. Thus for the nth harmonic wave, we have

E. = A.J.(\p) cosnd,  H, = B,J,(\p) sin 78, in the guide,
E. = C.K.(\2p) cos nb, H, = D,K.,(\sp) sin 78, in the air.

The exponential factor e~***%! is implied in these as well as in the
subsequent expressions for the field intensities. Another fundamental
solution is obtained by changing 6 into 6 4 =/2n.

The transverse components of E and H are obtainable from E, and

H. by differentiation. For our present purposes we need only E; and
Hy; these are
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Ey = [ J (M\p) + B. w“l n'()tlp)] sin 70, in the guide,
H = — [A ;“"; JOup) + Bagte T, o\lp)] cos 6, in the guide,

: (55)
Ey = [ C. ;L;Y K.(\2p) + D *%‘3 K. (Aap) ] sin 76, in the air,
2
Hy = — [ C., ;’:‘"": K. (hep) + D K ()\zp)] cos n6, in the air.

The boundary conditions require the continuity of the tangential
components of E and H. Henceif a is the radius of the guide, we have

A, Ta(Ma) = CuKa(hea), BalTn (m) = DuKa(Ma), (56)
A, J (\a) + B “““1 T (na) = c K (\a) + D. “"“2 K.'(\a),
A,.'“"f‘ T/ (\a) + Bag J (\a) = “"QK'(MG) +D Ka(\a).

At 7\ 2

This is a homogeneous set of linear equations in the coefficients 4, B, C
and D from which only the ratios of these coefficients can be deter-
mined. But there are only three independent ratios and four equations;
eliminating these ratios we shall obtain the characteristic equation of our
boundary value problem from which the propagation constant y can be
calculated in terms of the frequency, the radius of the guide and the
electromagnetic constants of the guide.

If n = 0, the above set of equations breaks up into two independent
sets connecting the pairs 4, C and B, D. Hence non-trivial solutions
are possible by letting 4 = C = 0or B = D = 0. In one case E, is
zero everywhere and in the other H, vanishes. Thus in the circularly
symmetric case we have waves of either the E-type or H-type in the
sense previously defined. But if # # 0, then E, and H, must be
present simultaneously.

The case n = 0 is so much simpler than the others that we shall
examine it separately. Thus the characteristic equation for an
Eg-wave is

aJi(Ma) eK1(A\a)
?\1&.]0()\1&) - REGKIJO\EG') !

(57)

and that for an Hg-wave is

mJi(Ma) _ pKa(Ma) | (58)
)\1&}0(11@) XzaKoO\'ﬂ)
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In addition to either of these equations, we have

v = \f?uz — pew?/c? = ‘\h\zz - Pﬂfﬂﬁ-’z!cz; (59)

and the condition that for truly guided waves v and A\; must be pure
imaginary while A, is real. When A, is pure imaginary, the Hankel
function of the second kind will decrease almost exponentially with
increasing distance from the guide if this distance is sufficiently large.

If My and \; are taken from (59) and substituted in (57) and (58) we
shall have equations determining v in terms of w. Unfortunately these
equations do not admit of an explicit solution for . It is possible,
however, to carry out the numerical calculations in the following
manner. We plot the left and the right terms of (57), let us say,
against their arguments; then we select a pair of values of these
arguments corresponding to equal ordinates. Let us suppose that we
obtain

(Ma)? = 2% (M) = — ¢ (60)

where p and ¢ are real. Referring to section III, we have p = y and
ig = x. Substituting these in (59) and solving, we have

w=_NF+E /&2;”_”4_1: (61)
avVuier — paes ¢ a

Since w1 usually equals us, the guided waves are possible only if the
dielectric constant of the guide is higher than that of the surrounding
medium,

The lowest value of g is zero; the right member of (57) is then infinite
and the corresponding value of $ must then be a root of

Jo(tm) = 0. (62)

Corresponding to each root we have a different mode of propagation.
The lowest frequency which can be transmitted in any particular mode
and the corresponding propagation constant are given by

_ Pm twVpses
g = ——o——, = —.
AV 1€ — pzes ¢

At this frequency the phase velocity of propagation is equal to that of
light in air. Since A, is small, the field extends to great distances
outside the guide. As g increases indefinitely, the right part of (57)
approaches zero and p must approach the root of J,(x) near the par-
ticular root of J, that we happen to be considering. Thus for large
values of ¢, we have approximately

(63)

w =

‘9 v = @ (64)
avu€e; — #m' ¢
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Hence at high frequencies the propagation takes place substantially
with the velocity of light appropriate to the substance of the guide.
The constant A» being large, the field is concentrated largely in the
guide.

Returning to the general n-th harmonic wave, we set

A, = SK,(\a), Ca = STa(Ma),
Bn = TK.(\a), Dn = TJu(Aa).

Substitute in the last two equations of (56) and eliminate .S and 7.
Thus we obtain

ny . Ky KTy
e ()

(65)

kg )\1
] J. K, K,J,’ 1 1 (66)
w [ €eJn n_flnﬂ _ﬂ Lt
Z‘( of M )3_ aJ,]Kn(Mz Mﬁ,)T
Subsequently
E].ulfn’z _ 'i(ﬂ#z + #IEQ)Jn’Kn' _ f?#ﬁKnﬂ
2 "2 JﬂK“ EKR2
*J lpq : q (67)
€141 |, €l
| = (5t a) ().
and finally
ey KnmiKntr - TnoaSwr il + me) S K
22 qunz 1M1 pzj 2 P_q.ann (68)
' g €141 T €2M2 + fape
CPe

Allowing g to approach zero, we shall obtain in the limit an equation
whose roots in conjunction with (61) determine the critical frequencies.

Thus if » > 1, we obtain

(e1u2 + paree) P?a,()?) = n(er — e)(p2 — 1) + % . (69)

Since ordinarily u1 = ps, (69) becomes

Jua(p) _ €
pTu(p)  (n— e+ ) (70)

If the dielectric constant of the guide is very much higher than that of
the surrounding air, the first few roots of (70) are very close to those of
Jaoi(p) = 0. As g increases indefinitely (68) degenerates into

Jaci(B) Jusa(p) _
A0 I (71)
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Thus in the limit the roots of (68) will be exactly those of J,_i(p) = 0.
In other words as g varies from 0 to « the corresponding value of p as
given by (68) will not change much. It might appear that the limiting
values of p could be roots of J.,1(p) = 0; this is not possible, however,
because in the process of transition ¢ would have to pass through the
intermediate zero of J.(p) and no real value of g is consistent with
such zeros.

The case n = 1 requires a special examination. After multiplying
(68) by ¢* and permitting ¢ to approach zero, we find that the first term
tends to infinity while the last term becomes a constant. Since the
gKy
K,
critical frequencies are determined by the zeros of J,(p).

One interesting point may be mentioned in conclusion. If the guide
were surrounded by a hypothetical medium of zero dielectric constant,
equation (57) for the E,-waves would become

limit of

is finite, J1($) must approach zero. Thus for n = 1, the

Jiwa) _
m =0, Ji(\a) =0. (72)

Thus the critical frequencies would be given by the roots of Ji(p) = 0
and not by those of Jo(p) = 0 as is the case for any ratio :—2 different
1

from zero no matter how small it may be. Our first impression is that
this result does violence to our physical common sense which de mands
that the hypothetical idealized case should be an approximation to the
real one when one dielectric constant is large in comparison with the
other. And indeed common sense is justified if one does not adhere too
closely to the exact mathematical definition of the expression “critical
frequency.” In the region between any particular zero of Jo(p), giving
the true critical frequency, and the corresponding zero ! of Ji(p),
giving the “approximate’ critical frequency, most of the energy
travels outside the guide, with a velocity substantially equal to that of
light in the surrounding medium. The ‘‘approximate’ critical
frequency marks the region of the most rapid transition from wave
propagation outside the guide to that inside the guide.

14 This zero is always larger than that of Jo(p).



